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Abstract

Optimal design of multilaminar fibre-reinforced
structures presents interesting problems. In this
paper, the problem is formulated as that of first
seeking the deflection pattern associated with the
optimal structure, and then inferring the optimal
design from this. This results in a decomposition
of the problem, and allows algorithms to be design~
ed which simultaneously determine the optimal num-
ber of layers in each finite element, their thick-
nesses and their fibre directions. In addition,
formulation in these terms allows some useful
insights to be gained without computation. The
paper includes a description of algorithms and
numerical results.

1. Introduction

The introduction of highly directional materials
such as boron and carbon fibre reinforced plastics
poses interesting and difficult problems for struc-
tural designers. The great difference in strength
and stiffness along and transverse to the fibre
axis means that the full benefits of these mater-
ials can only be realised by near-optimum design;
the penalties for poor design can be correspond-
ingly high. ) ‘

These characteristics mean that the design of
such structures is a natural area for the applic-
ation of numerical optimisation techniques. How-
ever, the problem posed is certainly more difficult
than its counterpart in the design of isotropic
structures; in addition to the distribution of
material, it is now necessary to determine the best
layup of the fibres. The latter requirement intro-
-duces a highly nonlinear element into the problem.

This paper is concerned with the design of a
particular class of structures, namely those const-
ructed from two dimensional plane stress elements,
each composed of a number of layers. In each layer
the fibres are unidirectional, and the layers are
distinguished from one another in having different
directions for their fibre axes. Three-dimensional
structures composed of such two-dimensional ele~
ments are of course common in aircraft design
practice. The design problem is to determine, for
each point in the structure, the optimal values of
the number of layers, their thicknesses, and their
fibre directions so as to minimise the overall
volume subject to stress and displacement limits
under a number of alternative applied load sets.

The simpler isotropic version of this problem
involves only material thicknesses, and has been
studied seriously for many years. Even this how-
ever, is far from trivial(1,2), and even at this
date it is probably fair to say that no completely
satisfactory method for its solution is in general
use. The essential difficulty lies in the non-
linear relationship between the element thicknesses
and the strains in the structure. This means that
the structural optimisation problem has nonlinear
and in fact nonconvex constraints which, combined

with the large number of variables in the problem
means that most of the commonly used methods of
nonlinear programming require a considerable con-
sumption of computing resources to solve practical
problems. Although new methods of nonlinear prog-
ramming such as Recursive Quadratic Programming and
Augmented ILagrangian techniques will eventually
have an impact, the current situation seems to be
that fairly ad—}zog methods have had to be employed
in everyday use 3). .

Given this background, the difficulty involved
in introducing additional variables into the prob-
lem (some noxel}near, some integer) is plain to see.
One approach 4) has been to restrict the allowable
fibre angles to a small discrete set. This reduces
the problem to a quasi-isotropic one, with more
thickness variables. Such an approach has much to
recommend it from an immediately practical point of
view; restrictions must be imposed in any case upon
the fibre angles to facilitate manufacture, and the
simplification allows the problem to be solved by
available techniques. However, there is clearly a
need for an approach which is capable of solving
the problem as it stands. Such a method would
allow restrictions on fibre angles to be imposed as
required, rather than having them imposed willy-
nilly; and in addition, from the point of view of
long-term progress, it is desirable to have methods
which exploit the particular properties of these
structures rather than forcing them arbitrarily
into a conventional framework.

The present paper describes a new formulation of
the structural optimisation problem which seems to
be peculiarly suited to multilaminar composites.

Its basis is a change of variables; the idea is to
use the nodal displacement of a finite element
model as the optimisation variables, rather than
the more usual design variables. The problem be-
comes in effect one of searching for optimal deflec~
tion patterns under the applied loads; the subsid-
iary problem of finding the structures associated
with such deflection patterns is imbedded in the
overall algorithm. The benefits flowing from this
reformulation are the following: (1) an immediate
insight into the nature of multilayer composites,
particularly as concerns the number of layers neces-
sary; (2) a decomposition of the problem into two,
one having a structure sufficiently similar to that
of Linear Programming to allow an algorithm to be
designed which solves the integer programming aspect
without restriction; (3) the capacity to determine
simultaneously the optimal number of layers, their
thicknesses and their fibre angles.

2. A deflection ~ space formulation

In this section the general problem described in
the introduction will be restricted to exclude both
direct constraints on stress, and multiple load
cases; we shall, however, retain constraints on the
deflections. These restrictions will be relaxed in
later sections.

Let the following vectors of design variables be
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where t* is the thickness of the j'th layer in the
itth finite element and the corresponding fibre
angle; Li is the number oil layers in the i'th
finite element, N is of course, the total number
of such elements. Any design D is completely
defined once values have been assigned to L, _and
L.

The overall problem to be solved can now be
expressed as follows:
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(2.1)

Li integer
Hi is the set of allowable angles for the layers in
element i - usually the half - open interval [0, ).
The quantity § is the deflection vector, defined as
follows:

{51, 3

where M is the (fixed) number of nodal degrees of
freedom of the structure. The deflections are due
to a fixed load vector P, also of dimension M. A3
is the (fixed) plane area of the i'th finite ele-
ment. The scalar functions £X($) may be of any
form.

o1 rees Sy )}

The deflections are related to the loads through
a stiffness matrix, K, which in turn depends upon
the design variables:

é = .I.{.-1 (I'.’ o, .I:) P (2.2)
K is linear in t but highly nonlinear in 8, so that

its inverse is nonlinear in both of these sets of
variables.

Before considering the formulation of problem
(2.1) in terms of deflections, it is convenient to
state the following optimality condition:

Let D* be a design which solves problem (2.1)
and let &% be its vector of deflections under load
P. Then, of all allowable structures having this
‘set of deflections under the load P, D* is that
which has minimum volume. An allowable design is
one which satisfies the direct constraints on the
design variables in problem (2.1).

The proof of this is straightforward, and will
not be repeated here. The property can be regarded
as a necessary condition on D¥, given &.

- objective function.

Consider now the way in which problem (2.1) must
be manipulated in order to express it in terms of &
only. The deflection constraints are of course
already in a suitable form, but the objective func-
tion poses a difficulty. In the form given, this
function may be regarded as a means of associating
uniquely a cost W with a design D(t, 9, L). Ideally
therefore, one would wish to associate a unique
design D with every deflection § under the load P.
Although (in the absence of instability) each D has
a uniquely defined &, the converse is hardly ever
true. However, the property stated above provides
a means of associating a unique volume with every
deflection. It is only necessary to use the fact
that the optimum design D* is uniquely related to
its deflection §* in that, of all allowable designs
having that deflection under P, the design D* is of
minimum volume. If this necessary condition is
enforced at every value of § under consideration,
an objective function W($) can be defined as fol~

lows:

let & be any M-vector; then W(_é) is defined as
the volume of that structure which has a deflection
equal to § under the load P, which is allowable,
and which is of lower volume than any other struc-
ture satisfying these conditions. If no such
structure exists, then W(d) is of infinite value.
Problem (2.1) becomes:-

Min W(&)

5.5, £5(8) <0 (p1)

k=1, 2, o.ey Q

It is clear that, in order to evaluate W(J), it is
necessary to solve a subsidiary minimisation prob-
lem, and thereby to generate a design (or designs)
D(b) which satisfies the necessary condition.
Evidently this problem (the inner subproblem) can
be expressed as follows:

N Li s

Min W(§) = I A, LTt

t, 0, L i=1 3=t 7
s.t. K(%,8,L) & = (»2)

t5 20, e;e: ', L, integer
{(where S is of course given).

The equality constraints in P2 are of course the
equilibrium-compatibility conditions for the struc-
ture.

Problem (2.1) has now been decomposed into two
subproblems. The outer problem is P1, and to solve
it a search is required in the M-dimensional space
of the deflections. During this search, the sub-
problem P2 must be solved each time the objective
function W(§) is evaluated. P2 is in terms of the
original design variables, and is a mixed integer
problem. At this stage, therefore, it may not be
obvious that the problem has been made more tract-
able by the reformulation. Clearly, P1 does not
directly involve integer variables, but the const-
raints have been simplified at the expense of the
In fact, in many pract:.ca.l
problems the function f¥($) will be very simple
indeed - often only upper and lower bounds on 4.
However, W(§) is now an unknown quantity as far as
its functional behaviour is concerned. In addition,
the subproblem P2, which will have to be solved )
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repeatedly in the course of solving P1, is on the
face of it a mixed integer problem not very much
eagsier to solve than the original problem itself.
Note that the equality constraints are nonlinear
in §.

It will be the aim of the next section of the
paper to show that in fact problem P2 can be solved
without difficulty by an algorithm which is a spec-
ial generalisation of the Simplex algorithm of Lin-
ear Programming. Furthermore, the function W($)
will be shown to possess useful properties from the
point of view of solving P1, particularly with
regard to the very important class of maximum
stiffness structures.

3. 'The inner subproblem P2

The inner subproblem will be considered first
because upon the ease of its solution depends the
feagibility of the whole approach. We begin by
writing the constraints explicitly in terms of the
design variables, bearing in mind that the dis-
placement vector § is given. let klj be the stiff-
ness matrix of the j'th layer in the i'th finite
element, referred to some global cartesian axes and
scaled to unit thickness. Then it is shown in ref.
(5) that this matrix can be expressed as follows in
the case of fibre-reinforced composites:
kd o

%
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+ £1COS 483 + 5_2 Sin 49:]

i i

k 26

+ _BCos eJ + L9
where 5;, r = 0,1, ..., 4 are matrices which depend
only on the fixed geometry of the i'th element and
81 is the angle between the fibre axis in the
i,j'th layer and the positive x-axis.

Using (3.1) we can write the total stiffness
matrix of the structure as:

N
K= Z k+k Cos49 ik
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The equality constraints in P2 can be written:
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where (9 ) is the load vector (per unit of
thickness) necessary to cause the i,j'th layer to
deflect by an amount &, if it were isolated from
the remainder of the structure. Using (3.1) it can
be written explicitly as:

i_ _1,] 3 iy s i
B; =2 +;g’ 00849 + 2’ Sm495

i i

+ 13’3 Sin 29;.L + 24"3 Cos 29;‘ (3.4)
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k' sin 2e§ (3.1) -

where 2:'3 = g_%’aé (x=0, ] 4), can be evaluated
immediately from the known klsJ and §. The immer
subproblem can now be written in full as follows:

N L
Min I Ai ot
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=2

L, . .
s.t. ot tJl. 2 ((9;); (3.5)

i=1 §=1
i C
t5 20, e;enl, L, integer.

Problem (3.5) has certain features in common with
the classical linear programming problem; indeed,
it can be viewed as such but with constraint co-
efficients which are nonconvex separable functions
of variables ©l whose optimal values 6% are re-
quired to be found, in addition to those of the
linear variables t%.

In ref. (6) the author has described a special
algorithm for solving this problem, a detailed
description of which is not possible within the
limits of the present paper. Briefly, it proceeds
as follows, It can easily be shown that a design
which solves problem 3.5 cannot have more than M
layers in total throughout the structure; the
problem therefore is to determine how these layers
are distributed and what their thicknesses and
fibre angles should be. The algorithm, which will
be referred to as the Functional Linear Programming
(FLP) algorithm, automatically generates an initial
design having M layers and satisfying the const-
raints in problem 3.5. Such a design is referred
to as 'basic feasible', a term borrowed from
classical L.P., practice. The procedure then conti-
nues iteratively, computing on each iteration the
parameters of a new layer to be introduced in some
element so as to decrease the total cost, and
determining which layer already present should be
discarded so as to maintain basic feasibility. It
will be recognised that this logic resembles that
of classical L.P.; indeed, the main difference
between the two algorithms is that in the case of
F.L.P. the reduced gradients, whose values deter-
mine the choice of new basic variables, are not
scalars but functions of the 6i. Therefore on
every iteration a number of one-dimensional minim-
isations are required. This poses no difficulty
because the functions to be minimised are simple
enough not to require an iterative procedure for
their solution.

It will be clear from this synopsis of the
algorithm that the optimal numbers of layers in
each element (the Lj) are generated automatically
during the process of adding and discarding layers
Note that on any iteration every element is con-
gidered as a candidate to receive a new layer or
to lose one which it already has; thus a layer may
be added to element i and another dropped from
elementj, where i may or may not equal j. It
follows that no integer variables as such appear
in the problem. Again, because the fibre angles
appear as arguments of the reduced gradient func-
tions their optimal values can be found exactly
subject only to the fact that such values must be
in the sets H1, which can be either continuous or
discrete. If any of the feasible sets are contin-
nous, the algorithm generates an infinite sequence
of solutions which must be terminated when some



convergence criterion has been satisfied. In this
it contrasts with classical Linear Programming,
vwhich is a finite process.

Having described the general approach to solv-
ing problem P2, it is now possible to relax a
restriction imposed during the previous section,
namely the exclusion of stress constraints. Bear-
ing in mind that we are solving a problem for
fixed deflection, it follows that all feasible
solutions to P2 have identical strains. The
stresses, of course, depend in addition upon the
fibre angles 91. Now the way in which these ang-
les are chosen by the algorithm has already been
described; they are the values which give minimal
reduced gradients at each iteration. Any restric-
tion on stress, therefore, simply means that the
one~dimensional minimisations become constrained.
There is no direct effect on the thickness vari-
ables and, in particular, the total numbers of
layers in the structure remain unchanged (see
section 5 below).

References 5 and 7 contain a description of the
‘numerical experience which has been gained with
the FLP algorithm, implemented as a FORTRAN prog-
ram. Problems solved have been fairly small
because of limitations imposed by computer size;
typically M and N would be between 30 and 45. No
difficulties have been encountered in any of the
cases, Perhaps the most striking result has been
the enormous range of designs which can be found,
all having identical deflections under a given
load. The point is clearly demonstrated by the
second of the examples given at the end of the
paper. Here, the range was wide enough to include
structures whose costs (in this case, volumes)
differed from one another in the ratio 10:1.

- It was stated at the beginning of this section
that the feasibility of the whole deflection -
variable approach depends mainly upon the ease
with which P2 can be solved. The functional lin—
ear programming algorithm provides a means of
overcoming the difficulties inherent in the prob=-
lem, particularly its integer programming aspect,
and is both reliable and reasonably efficient.
Because this algorithm is in itself a considerable
departure from other methods of constrained mini-
misation, it seems to offer considerable scope for
further development both theoretically and numeri-
cally. TFor the moment, however, it can be claimed
that the numerical experience so far gained, and
described in part in references 5, 6 and 7 and in
section 6 of this paper provide a sufficiently
firm base to justify proceding to solve the outer
problem P1. ‘

4. The P1 subproblem

The solvability of the outer problem P1 depends
both on the properties of the objective function
W($) and on the particular form of the constraints
f¥(8). In practice deflection constraints are
seldom complicated, and in fact a very important
class of structures will be shown to be charac-
terised by only one linear equality constraint.
The key question therefore involves the properties
- of the function W($).

It has been stated in section 3 that W(§) can
be fairly easily evaluated using the Functional
Linear Programming algorithm., Clearly, P2 will
not have a solution for every vector in M-space;

for example the whole half-space defined by the
unequality Pt$ < O consists of a set of deflec~
tions for which any structures would have non-
positive strain energy; such a structure would
violate the principle of conservation of energy.
By definition the value of W(§) in that half-space
is infinite. However, even in the positive-energy
half-space there may exist regions in which no
structure is defined; all such regions will be
described as "physically infeasible" to distingu-
ish them from the merely infeasible regions for
which the arbitrary constrainte £X%(§) < 0 are not
satisfied. Clearly, if P2 can be solved for some
deflection §', then a solution also exists for any
deflection o d', o« > 0; in fact the designs are
the same for all positive values of ¢ , except
that the thickness vector t and therefore the
value of W is scaled by 14 . It follows that the
boundaries of the physically infeasible regions
are straight line generators passing through the
origin in §-~space. The existence of such bound- -
aries is a potential source of difficulty with the
method, and the behaviour of the function near
them requires more investigation., To date, how-
ever, they have caused no computational difficul-
ties, It is shown in ref. 5 that W(§) is continu-
ous and differentiable everywhere except in and on
the boundaries of this physically infeasible
region.

The differentiability of W($) is a very useful
feature from the point of view of solving P1. In
fact the derivatives are easily computed in spite
of the. fact that W(&) is not of explicitly known
analytic form. To see how this is done, consider
the dual gro lem associated with P2. This can be
written (9:8);

Max 22
8,2

st p (DL <A i=1, 2, o, N (401)

otewt

where ) is the M-vector of dual variables (Lagrange
Multipliers) associated with the equality const-
raints in (3.5). Either by direct differentiation
of (3.5), or by noting that A can be interpreted
as the derivative of the objective function in
(3.5) with respect to changes in the right-hand
sides of the constraint equations, we obtain the
following expression for the derivatives of W(é_):

%(é) =-K2 (4.2)

where K is the stiffness matrix of the design which
is the optimal solution to (4.1) for the given
vector §. Since the evaluation of W(8) involves
the solution of P2 and hence the determination of
2, it follows that equation 3.2 allows us to com-
pute the derivatives of W($) with almost no addi-
tional effort. The usefulness of this property
can be judged from the fact that to.evaluate the
derivatives approximately using central differ-
ences would require 2M+1 solutions of P2 where M,
the number of nodal degrees of freedom, might well
be large. :

The investigation of the properties of the func-
tion W($) requires much more space than it can be
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given in a condensed account such as this; ref. 5
contains a more detailed description. However,
some observations will be made.

If 3 is interpreted as a virtual deflection
then the dual P2 (4.1) can be seen as the problem
of maximising the total virtual energy under the
requirement that the individual strain-energy den-
sities pF(61)A /A3 be less than unity. (Note that
p_i_(gi) is a unit thickness force vector, so that
the strain-energy density interpretation is dimen-
sionally correct). Taking this a little further,
and recalling the definition of 21(91) embodied in
equations 3.3, it can be seen that the typical
constraint of dual P2 takes on the following
interesting bilinear form in terms of ¢ and 2:

&'k, 61/ <1,

This form suggests the question: what is the
significance of the special case where § is prop-
ortional tod? In fact, this relationship is a
property of maximum stiffness structures, which
will be discussed in section 6.

5. Upper limits on the number of layers
in the optimal structures

Before proceding to discuss the design of an
algorithm for solving the overall problem, it is
worthwhile considering the information which can
be gleaned from the form of problems P1/P2. Note
first that the overall solution to problem (1)
must also be a solution to P2, But P2 is essen-
tially a Linear Program in an infinite number of
variables; the number of constraints is a finite
number M', In the case so far considered, M' is
simply the number of degrees of freedom of the
structure. . Each additional alternative load set
increases the number of constraints in P2, although
not by M. If (Pj, §;) are the i'th alternative
load set and its corresponding deflection (for any
d%sign) then, by the Virtual Work Theorem:

Pigi =2 834 i=1,2, ..., @ where Q is the
number of load cases. It follows from this that if
the load sets are arbitrarily ordered 1 to §, then
the first introduces M constraints into P2, the
second (M-1), the third (M-2) and so on. The maxi-
mum number of load cases which can independently
influence the design is thus M(M+1)/2, which is
equal to the number of independent elements in the
stiffness matrix., If Q is less than this value,
then the number of consiraints on P2 is equal to
MQ - Q(@~1)/2. ‘The significance of this value is,
that for any Linear Program, the solution has at
most M' nonzero values of its variables, where M'
is the number of constraints. This property holds
also for problems of the form P2, where the corres~
ponding variables are the tj. It follows that
there will not be more than'min (MQ - Q(Q-1)/2,
M(M+1)/2) layers in total throughout the structure’,

This argument has been carried further in 9,

where it is shown that from this point of view the -

finite elements can be considered in isolation. It
follows that, for example, a six node element have
ing nine degrees of freedom cannot have more than
nine layers if it is to form part of a structure
which is optimal under a singie load set. Simi=-
larly, a three-node element will not have more than
three layers, The implications of this for the
best choice of ideallisation seem interesting.

It can be seen that the formulation of problem

(1) in terms of P1 and P2 immediately yields infor-
mation which is not so easily available otherwise.
It is perhaps worth stressing that the limits
obtained above are not imposed as a result of the
re~formulation;- problems P1 - P2 are together
exactly equivalent to (1), and any characteristics

"of a design vwhich solves them are also those of

solutions to 2.1. In fact, the resulis obtained
above are particular cases of a more general
theorem applying to any linear structure under any
combination of stress and displacement constraints,
but excluding buckling constraints. It can be
used, for example, to show that the optimal truss
under one load set is statically determinate and
also to derive the corresponding conditions for
multiple alternative loads.

There is another result which can be cobtained
from similar considerations, but this time it takes
account of the particular properties of laminates.
It is described in Ref. 9 and summarised here. If
we consider any finite element, we can write down
a problem of the same form as P2 bui involving only
that element. The problem canmot of course be
solved numerically, because it involves a load vec~
tor which depends on the overall applied load and
the overall design and is therefore not in general
a known quantity. However, by considering the form
of this problem it becomes clear that the maximum
number of independent constraints on it is in fact
five; this number follows from the fact that 2} can
be represented (3.4) by a linear combination o
five independent vectors and not more. Thus, from
the argument used in the first part of this section
the number of layers in any element cannot exceed
five in an optimal structure. This result, unlike
the earlier one which it supplements, is independ-
ent of the number of degrees of freedom of the
element, and is therefore independent of the ideal-
ization.

6. Maximum stiffness structures

In this section an important class of problems
defined by a particular deflection ¢onstraint will
be considered, A structure of maximum stiffness is
defined to be one whose strain energy is a minimum
for a given volume, that is, one whose strain
energy density is a minimum, It can be shown(7)
that such a design is the same as that whose volume
is minimal for a given strain enexrgy.

It follows that the maximum-stiffness problem
can be expressed as follows:
Min  W(4)
$

(6.1)
s.t. Pl&=E

Where W($) is of course the function defined in

section 2 and E is a fixed energy constraint. Thus
the problem has only one constraint, and that lin- ..
ear. . : ’

The lagrangian function associated with problem
(6.1) is clearly:

L@ ) = W(8) - p (2% - B)

where u is a lagrangian multiplier.
For a solution to (6.1) we require that the follow-
ing condition be smatisfied:

(6.2)
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VL(&p) = VW(E) +pP = 0 (6.3)

Using (4.2), together with the equations relating
P and § we obtain:

K(pS-2)=0 (6.4)

Here, the matrix K as well as the vector §and A
are those associated with the structure/s satisfy-

ing (6.1). Unless K is singular equation (6.4)
implies:

s =2 (6.5)
Premultiplying (6.5) by gt gives:

=2 ots (6.6)

BEquation (6.5) shows that, if a solution to
(6.1) exists, then for such a design the deflec~
tions $§ are proportional to the dual variables 2.

This property of maximum stiffness structures
has already been mentioned in the previous section.
If a maximum stiffness design has values of design
variables denoted by 9%, t* and L*, then it can be
shown that the inequalities in the dual problem
(4.1) are satisfied as equalities for § 3 corres-
ponding to 9%, Thus:

t, i1
2K (93)1. = Ai
Using (6.5) and (6.6) we obtain:

i=1, .eey N,

t

2a
1 - t .1 i
I T & E(8D& =1,
4 by 3

Now _I:té = E is the total strain energy of the
structure, and P¥} = W(&) is the volume of the
optimal structure. Thus, we can write:

i

E. :
1 t i BE
= (8" k(03)8) = =L -2 - Constant
AT A ¥ oW

vhere W; is the volume of the i'th layer. In other
words the strain energy per unit volume within all
layers in every element is constant and equal to
the strain energy per unit volume of the structure
as a whole, This relationship is derived by
Venkayya et al in ref. 4 by another approach, and
in fact forms the basis of their optimality crit-
erion algorithm. It is a general property of
maximum~stiffness structures and is not limited to
those which are multilaminar. But it will be shown
below that the constant strain energy density con-
dition necessarily cannot always be satisfied,
because of the existence of physically infeasible
regions in §-space. This problem is shown up very
clearly by the deflection space formulation.

Relationship (6.5) suggests the following
iterative procedure for solving (6.1):

é-k'f-“ - ék ¥ Sk(_A_k —/Lkék) (6.7)
~sk is a step-length whose determination will be
discussed below. Clearly, when (6.5) is satisfied
equation (6.7) will imply no further change in S.
That iteration (6.7; implies downhill directions
on the function W($) is easily shown as follows.
Downhill directions will be defined as vectors -
satisfying the following condition:

595

o <o (6.8)
using equation (3.2) to eliminate the derivative
and taking the direction defined by equation (6.7),
we then require to prove the following inequality
for the k'th jteration (the k is dropped
for simplicity)

-@-p)tra <o
and using (6.6) this would imply:

PP

£ ka-2" k2

e

<0

to,
1o

& we obtain

Using P =
t

I=

o
1=
%)

—— ' Kka-2"K2 <0

1o
=
[ S

i.e. we must prove that:

k0% < FEp QF k. (6.9)

Since K is, by the well known property of stiffness
matrices, at least positive semidefinite, it can
be written in the form:

+t
K = o'Q.
Define the following variables:
r=8%
X=92A
substituting these expressions in (6.9) we obtain:
t 42 % t
Ep L EDEY-.

This is the Schwartz inequality, which holds for
any vectors x, y in Buclidian vector space; thus
the assertion is proved.

The equality holds in either of two cases:
(1) A =p $, i.e. at an optimum
(i1) ko= O.

In the case (ii) the stiffness matrix is singular,
that is, has at least one zero eigenvalue, which
has an eigenvector coinciding with the vector of
dual variables, A .

The simplicity of iteration (6.7), as well as
its downhill property, recommends its use as the
basis of an algorithm for finding maximum-stiff.
ness structures. The following is such an algor-

ithm.
Step 0 Set k = 0. For an arbitrary des::Lgn,
generate its deflections §_k and its-
strain energy Pt $K = E.
k k k 'k k k¢k
Step 1 Compute W(S™), 2 s M, & =24 - &7,
and V W(sK) = -%{_k 2K where EX is the
stiffness matrix of the optimal design
having deflections §X.
: t
k
step2  If || <€, or-lgFV W (E)| ¢,

(where €1 and €5 are small positive



numbers), then:

Step 2(a) Set 5% = 55, Wk = W(E), t* = 5, O%=4

and L¥ = s stop. Otherwise:

Step 3 Using for example a parabolic unidirec—
tional search technique as in ref. 5, find
sK in equation (6.7) such that:

k+1 k
w(ET) <w(g)

Step 4 Iflskl <€3 (small positive number), go to
step 2(a)? Otherwise set k = k+1 and

return to step 1.

Pigures 6.1 and 6.2 illustrate this algorithm. For
clarity the plane of diagram 6.2 is chosen to coin-
cide with the hyperplane of constant energy, on
which lie all points generated by the above algor-
ithm. PFor this reason the coordinates axes in the
diagram are not the deflections but a linear combin-
ation of them.

It is important to realise that this algorithm
can converge in a number of ways. Firstly,
Ié_k'” - §¥| can become very small in either of the
two ways listed above, that is, either at an opti-
mm or at a point where X is singular and ) is an
eigenvector of zero eigenvalue. There is, however,
another very significant way in which it can stop,
namely, when the search directions terminate on the
boundary of a physically infeasible region. These
regions constitute, in effect, additional const-
raints on problem P1 over and above the arbitrary
‘constraints £i($) < 0. They are unfortunately not
expressible analytically (or do not seem to be) so
that they cannot be easily included in the problem
statement. However, their existence implies the
possibility that the 'solution' (the point where
2=p §) does not lie in a physically feasible
region: does not, in fact exist. In such a case,
the algorithm can be expected to approach the
boundary of the physically feasible region in which
it has started and finally to halt when the crit-
erion [sK| <€; is satisfied. This means that a
point is generated such that either W(é) increases
sharply after an initial decrease along the search
direction, or that a significant move along this
direction takes the search into the physically
infeasible region in which W(§) is defined to be
infinite. There seems to be some evidence to sug-
gest that the function may in fact tend to increase
steeply as the boundary is approached from the phy-
sically feasible side, thus forming a natural bar-
rier; but this point remains to be investigated.
At any rate, such a 'non-optimal'! convergence may
indeed be the best that any algorithm could be
expected to do, and that it may be a perfectly
satisfactory solution will be démonstrated by .one
of the numerical examples given.in section 7 of
this paper.

Generate initial physically]
feasible deflectiond
arbitrary design D°

Solve P2 to find the minimum—
volume structure Dk with
deflection 3 X under load P

ompute search direction
a2 AX_ kg k
and vW(§5) = &KX

k kit k Yen
<Ig|<e1orlvw(§ 1 <,

Yes
k = k+1

Pigure 6.2

1. Numerical examples

An illustrative example

There is a simple truss structure which illust-
rates very well the techniques described above
(fig. 7.1). The problem is to transmit a load
P = (P, Py) from a point A to an infinite found-
ation unit’ distance below it by means of pin-
jointed bars. The number of bars, their cross-sec-
tional areas, and their angles ®; must be found in

such a way as to produce a structure of maximum
stiffness.

596



Figure 7.1

These variables are analogous to numbers of lay-
ers, thicknesses, and fibre angles in a one-finite
-element sheet.

The P1 problem is to find the structure having
the lowest possible value of W($) subject to the

condition that Eté is some fixed value (the actual.

value being arbitrary). It is necessary, for any
deflection § = (9y, 8y) at 4, to be able to solve
the P2 problem, which is, to find the structure of
ninimum volume having that deflection under the

. given load. We will, for the purposes of illust-
ration, choose the case of horizontal load only
(Py = 0; Py = 1000 E); in addition, rather than
allowing an infinite choice of bars, a finite num-
ber having attachments to earth at a discrete num-
ber of points will be used. This is absolutely
not a necessary restriction and indeed ref. 5
shows how the problem can be solved exactly; but
it reduces the Functional Linear Programming Prob-
lem to one of ordinary Linear Programming. In
fact, sixteen bars have been allowed, and the P2
problem is thus: for any (5., & ):

y
16
Min % Ai/Slnei_
i=1
16 2 s
.t in ©, .
s.t i—f‘l A {Cos 9:'. §in 6, . O
0 gin? _
+ Cos & sin ‘91 .éyS_ 1000 P2
16 2
I A, {Cos O, sin“0 S
§=1 1 1 1

£ 20

.3
+ Sin Gi.éy} = o.
A,
0 ;< .

This is a Linear Program with 16 varizbles and 2
constraints (m = 2); it follows that if it has a
solution, such a solution will not have more than
2 nonzero values of A;. Hence, since the overall
solution is a solution to P2 for some choice of
(8x» 6y), it follows that the overall solution is
also a two~bar truss. Notice that this is true no
matter how many bars had been allowed as candid-
ates; this is of course the basis of the limits
described in section 5.

Problem P2 was solved for a range of values of
(5%, 8y); the results are shown in figure 7.2.
This should be regarded as the upper half of a
symmetrical graph., There is no solution to P2
for deflections on the hatched side of line A-Aj
that is, there are no structures having such

0.767
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0.020 e 4
i 1,16 1,16
6}’
/
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"/
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0fos 00w 5 008 0.020

Figure 7.2

deflections under horizontal loads. The P1 problem
can now be expressed as follows: find the point on
the (S4, 6y) plane such that W($) is & minimum sub-
ject to Py dy = constant. That is, we must find
the minimum of W(d) along any arbitrary vertical
line on the diagram. Inspection quickly reveals
that such a point will lie on the$, axis, although
of course such a conclusion would have to be veri-
fied by solving P2 for a wider range of values of
(54» 4y). All designs along the §, axis can be
seen to have the same layout; indeed this is true
for any line passing through the origin and lying
in the physically feasible region. This layout is
orthogonal, and is in fact the Michell solution to
the problem.

Two (fomposite Sheets

The algorithm developed in section 6 was imple~
mented as a fortran program for the DEC PDP-10
computer at Hatfield Polytechnic, and a number of
problems have been solved using it. Two of these
are shown below (figures 7.3, 7.4). They are a
cantilever structure and a sheet with a circular
cutout, subject to simple tensile stress.

Cantilever

2 c; : § o

7 |
i

i

1007 g e e

\[. 1.0 Kip

L
' Figure 7.3

The overall form of the cantilever was chosen
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to approximate a Michell structure, and the finite
element mesh was defined so as to follow approxim—
ately the lines of principal stress in such a
gtructure. The results are fully reported in refs
5 and 7; only the highlights will be discussed
here.

The problem was solved from two distinct start-
ing points., The first was a design of unit thick-
ness, with a single layer in each finite element
with fibres parallel to the centre line. The
second had fibres at an angle of -0.8 rads above
the centre line and +0.8 below it, the angles
being measured anticlockwise from that line.

The overall results of the runs from these two
starting points are summarised in table 1; all

1 .2 3 4 5

S.P.1 | 37.6940 | 3.5395 | 3.1357 | 0.002 | 5

8.P.2 | 11.7062 | 4.4000 | 3.1355 | 0.001 | 6
Table 1

1. Initial volume (cubic inches)
2. Initial optimum volume (fixed deflection)
3. Final optimum volume

4. 15=2 /] /151

5. Iterations.

volumes in the second row of this table have been
scaled so that both starting points had the same
strain energy. This ensures that solutions are
comparable. )

The first column in the table is self-expla-
natory. The second column is the volume of the
structure having the same deflection as the start-
ing design, but of minimum volume. The ratios of
these volumes is remarkable; in the first case,
more than 10 : 1. Colwm 2 was obtained by solv-
ing one Functional Linear Programming problem,
i.e. P2, in each case. The final volumes, shown
in column 3, were obtained by the algorithm of
gection 6. As can be seen, the same volume was
obtained from both starting points; in fact, the
designs were virtually identical. Column 4 gives
a measure of the optimality of the designs; it
shows the angle between the virtual deflection 2
and the actual deflection §, which would be zero
for a true maximum stiffness design. It can be
seen that this is very nearly the case.

The actual design achieved is discussed in de~
tail in refs. 5 and 7. It turned out that the
fibres more or less followed the principal stress
lines of a Michell structure, and that consider-
able numbers of the finite elements ended up with
- orthogonal fibre layouts. The arguments of sec~
tion 6 show that no element can have more than
three layers in this case; most in fact have
either one or two.

Sheet with Cutout (Figure 7.4)

This problem was in one sense a more difficult
one than the cantilever, because it does not
appear to posess a true solution, in the sense
that no structure seems to exist having a uniform
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strain-energy density. Since the algorithm being
used actively seeks such a design, it follows that
it will finish in a non-standard way.

_.__._.___.6"_@,A_.._.______.
12"
Figure 7.4
1 2 3 4 5
17.227 | 14.267 | 12.683 | 0.57 | 11
Table 2

Initial volume (cubic inches)

Tnitial optimum volume (fixed deflection)

18 =2/l /181

1.
2.
3. TPinal optimum volume
4.
5. Iterations.

Table 2 shows the main results of the run; once
again the final design is discussed in detail in
Refs. 5 and 7. It can be seen that column 4 of

' table 2 indicates non-optimality in the strict

sense. In fact, the algorithm finally stopped on
the boundary of the physically feasible region,
after 11 iterations; there was no evidence of
erratic behaviour or other difficulty (see ref. 5
for a more detailed discussion). Clearly, the
nez-ssity of stopping near the physically infeas-
ible region is not a fundamental source of diffi-
culty, which is encouraging since the existence
of such regions introduces difficulties in analysis
The problem has been solved by Khot et al 4)
who found a design about 18% heavier. Since the
mesh used by them was much finer than the present
one, comparisons are difficult; however, it does
suggest that the solution obtained by the deflec~
tion~-variable technique was a valid one.

8. Conclusions

This paper has described an approach to the
optimisation of multilaminar composites. The
innovation involved consists in viewing the prob-
lem in terms of deflections rather than design
variables, and it reveals an underlying structure
which is not obvious in other formulations. By
exploiting this structure, it has been shown that
algorithms can be designed which allow numbers of
layers, their thicknesses and their fibre orient-
ations to be optimised simultaneously; in addition,
useful general insights can be gained into the
form of optimal composites. Indeed, this approach
to structural optimisation can obviously be extend-
ed to other structural systems, both as an analyti-
cal and a computational tool.

Although the methods described in this paper are
clearly still at an early stage of development, it
is worth considering the contribution which they
might, with very little extra effort, be able to



make to the practical design of fibre-reinforced
laminates. Their first advantage is the freedom
which they allow in the choice of fibre angles.
One can imagine the functional linear programming
algorithm initially being used in conjunction with
one of the optimality criterion methods in the
following way. As has already been mentioned,
such methods, of necessity, restrict the allowable
fibre angles to a small set. However, if §* is
the deflection of a design found by an optimality-
criterion method, the FLP algorithm could be used
to find the minimum-wolume design corresponding to
this deflection, without restriction on the fibre
angles, or with fewer restrictions. The result
may not be truly optimal, since % will not be an
optimal deflection, but it is likely that it will
be an improvement over the first attempt. In this
way the FLP algorithm could be further tested and
developed; at some stage algorithms for the solu-
tion of the outer subproblem could be introduced
and tested in parallel with the established
methods.

The solution to the problems described in sec—
tion 7 had one characteristic which would often be
undesirable in practice; namely, finite elements
which were "empty" in the sense of having no lay-
ers assigned to them. Normally some lower limit
on the total thickness of material in any element
would be a part of the problem statement. Such a
constraint can be very easily applied as part of
the functional linear programming algorithm; empty
elements are not an inherent feature of the method
However, the fact that the algorithm can, if al-
lowed, point to areas of the structure which per-
haps ought to be empty is a useful feature because
it suggests an interactive way of using the method
for shape optimisation. Suppose, for example,
that the cantilever structure of problem 2 had
been defined, not by a curve, but by a rectangular
envelope containing it. An initial application of
the deflection-variable algorithms would be ex-—
pected to produce empty elements around the uppexr
and lower free corners. The FLP algorithm auto-
matically prevents any node from becoming isolated,
however, so that some vestigial elements would
remain in these regions to allow all nodes to re-
main connected. A next step would be to redefine
the finite element mesh to eliminate nodes which
clearly served no purpose, thus allowing larger
areas to be emptied on the next run. In this way
the optimum outline, as well as the internal de-
sign; of the structure would emerge. This had been
done in part for the finite element mesh of figure
7.5, where early experiments had shown that the
root area between the two (final) points of support
ought to be empty and was therefore not assigned
an element.

Accord%ng to some authors, e.g. Ham and
Willshirell ) the form in which fibre-reinforced
composites will be initially used on a large scale
in aeronautical structures will be as reinforcing
on isotropic primary structures. Mixed problems
of this type would present no difficulty for the
methods described in this report; the P2 problem
would simply take on a form with some constraint
columns, p., fixed and some variable. The func-
tional lingar programming algorithm is capable of
solving such problems without modification.

Finally, any discussion of the scope of the
deflection-variable method would not be complete
without a reference to its generality; it is not

(3) R.A. Gellatly & L. Berke.

just applicable to multilaminar structures. Prob-
lems involving trusses, space frames, rigid frames
and isotropic sheets can also be approached in this -
way. The inner subproblem would differ in its form
from one class of structures to another; in some
cages it would be of classical L.P. form, and in
others FIP. This would seem to be an interesting
area for further research.
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